Automate Document Workflows with Claude Skills
Build complete document processing pipelines using Skills. This tutorial shows real-world automation patterns.
Workflow 1: Invoice Processing
Goal: Extract data from PDF invoices → Validate → Store in database
markdown1# Invoice Processing Workflow 2 3## Skills Required 41. pdf-extractor: Extract text from PDFs 52. invoice-parser: Parse invoice fields 63. data-validator: Validate extracted data 74. database-writer: Store results 8 9## Workflow Steps 101. Receive PDF invoice 112. Extract text content using pdf-extractor 123. Parse invoice fields using invoice-parser 134. Validate data using data-validator 145. Store in database using database-writer 156. Send confirmation email1# Invoice Processing Workflow 2 3## Skills Required 41. pdf-extractor: Extract text from PDFs 52. invoice-parser: Parse invoice fields 63. data-validator: Validate extracted data 74. database-writer: Store results 8 9## Workflow Steps 101. Receive PDF invoice 112. Extract text content using pdf-extractor 123. Parse invoice fields using invoice-parser 134. Validate data using data-validator 145. Store in database using database-writer 156. Send confirmation email
Implementation
python1# workflow.py 2from skills import pdf_extractor, invoice_parser, data_validator, database_writer 3 4def process_invoice(invoice_path): 5 # Step 1: Extract text 6 text = pdf_extractor.extract(invoice_path) 7 8 # Step 2: Parse fields 9 data = invoice_parser.parse(text) 10 11 # Step 3: Validate 12 if not data_validator.validate(data): 13 return {"status": "error", "message": "Invalid data"} 14 15 # Step 4: Store 16 database_writer.insert("invoices", data) 17 18 return {"status": "success", "invoice_id": data['id']}1# workflow.py 2from skills import pdf_extractor, invoice_parser, data_validator, database_writer 3 4def process_invoice(invoice_path): 5 # Step 1: Extract text 6 text = pdf_extractor.extract(invoice_path) 7 8 # Step 2: Parse fields 9 data = invoice_parser.parse(text) 10 11 # Step 3: Validate 12 if not data_validator.validate(data): 13 return {"status": "error", "message": "Invalid data"} 14 15 # Step 4: Store 16 database_writer.insert("invoices", data) 17 18 return {"status": "success", "invoice_id": data['id']}
Workflow 2: Report Generation
Goal: Collect data → Analyze → Generate PDF report → Distribute
markdown1# Report Generation Workflow 2 3## Skills Required 41. data-collector: Gather data from sources 52. data-analyzer: Perform analysis 63. chart-generator: Create visualizations 74. pdf-generator: Build PDF report 85. email-sender: Distribute report 9 10## Schedule 11Run daily at 9 AM using task scheduler1# Report Generation Workflow 2 3## Skills Required 41. data-collector: Gather data from sources 52. data-analyzer: Perform analysis 63. chart-generator: Create visualizations 74. pdf-generator: Build PDF report 85. email-sender: Distribute report 9 10## Schedule 11Run daily at 9 AM using task scheduler
Implementation
python1def generate_daily_report(): 2 # Collect data 3 data = data_collector.fetch_yesterday_metrics() 4 5 # Analyze 6 insights = data_analyzer.analyze(data) 7 8 # Generate charts 9 charts = chart_generator.create_charts(data) 10 11 # Build PDF 12 pdf = pdf_generator.create_report({ 13 "data": data, 14 "insights": insights, 15 "charts": charts 16 }) 17 18 # Send email 19 email_sender.send( 20 to=["[email protected]"], 21 subject="Daily Report", 22 attachment=pdf 23 )1def generate_daily_report(): 2 # Collect data 3 data = data_collector.fetch_yesterday_metrics() 4 5 # Analyze 6 insights = data_analyzer.analyze(data) 7 8 # Generate charts 9 charts = chart_generator.create_charts(data) 10 11 # Build PDF 12 pdf = pdf_generator.create_report({ 13 "data": data, 14 "insights": insights, 15 "charts": charts 16 }) 17 18 # Send email 19 email_sender.send( 20 to=["[email protected]"], 21 subject="Daily Report", 22 attachment=pdf 23 )
Workflow 3: Document Conversion Pipeline
Goal: Convert multiple formats → Standardize → Archive
markdown1# Document Conversion Workflow 2 3## Skills Required 41. format-detector: Identify file formats 52. word-converter: Convert Word to PDF 63. excel-converter: Convert Excel to PDF 74. ppt-converter: Convert PowerPoint to PDF 85. document-archiver: Store in archive1# Document Conversion Workflow 2 3## Skills Required 41. format-detector: Identify file formats 52. word-converter: Convert Word to PDF 63. excel-converter: Convert Excel to PDF 74. ppt-converter: Convert PowerPoint to PDF 85. document-archiver: Store in archive
Implementation
python1def convert_and_archive(document_path): 2 # Detect format 3 format = format_detector.detect(document_path) 4 5 # Convert to PDF 6 converters = { 7 "docx": word_converter, 8 "xlsx": excel_converter, 9 "pptx": ppt_converter 10 } 11 12 if format in converters: 13 pdf = converters[format].to_pdf(document_path) 14 else: 15 pdf = document_path # Already PDF 16 17 # Archive 18 document_archiver.store(pdf, metadata={ 19 "original_format": format, 20 "converted_at": datetime.now() 21 })1def convert_and_archive(document_path): 2 # Detect format 3 format = format_detector.detect(document_path) 4 5 # Convert to PDF 6 converters = { 7 "docx": word_converter, 8 "xlsx": excel_converter, 9 "pptx": ppt_converter 10 } 11 12 if format in converters: 13 pdf = converters[format].to_pdf(document_path) 14 else: 15 pdf = document_path # Already PDF 16 17 # Archive 18 document_archiver.store(pdf, metadata={ 19 "original_format": format, 20 "converted_at": datetime.now() 21 })
Best Practices
1. Error Handling
Add try-catch blocks at each step:
python1def process_with_error_handling(doc): 2 try: 3 result = extractor.extract(doc) 4 except Exception as e: 5 log_error(f"Extraction failed: {e}") 6 send_alert("Extraction error", doc) 7 return None1def process_with_error_handling(doc): 2 try: 3 result = extractor.extract(doc) 4 except Exception as e: 5 log_error(f"Extraction failed: {e}") 6 send_alert("Extraction error", doc) 7 return None
2. Logging
Track workflow progress:
pythonimport logging logger.info(f"Starting workflow for {doc_id}") logger.debug(f"Extracted {len(text)} characters") logger.error(f"Validation failed: {errors}")import logging logger.info(f"Starting workflow for {doc_id}") logger.debug(f"Extracted {len(text)} characters") logger.error(f"Validation failed: {errors}")
3. Monitoring
Monitor workflow health:
python1from prometheus_client import Counter, Histogram 2 3processed = Counter('docs_processed', 'Documents processed') 4duration = Histogram('processing_duration', 'Processing time') 5 6@duration.time() 7def process_document(doc): 8 result = workflow(doc) 9 processed.inc() 10 return result1from prometheus_client import Counter, Histogram 2 3processed = Counter('docs_processed', 'Documents processed') 4duration = Histogram('processing_duration', 'Processing time') 5 6@duration.time() 7def process_document(doc): 8 result = workflow(doc) 9 processed.inc() 10 return result
Real-World Example: Box Integration
Box uses Claude Skills to automate document workflows:
- Convert stored files to PowerPoint, Excel, Word
- Standardize formats across organization
- Significant time savings
Source: 53AI - Real-World Cases
Resources
Reading Time: 5 minutes
Author: ClaudeSkills Team